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CONSPECTUS: Molecular mechanical force fields have been successfully used to
model condensed-phase and biological systems for a half century. By means of careful
parametrization, such classical force fields can be used to provide useful
interpretations of experimental findings and predictions of certain properties. Yet,
there is a need to further improve computational accuracy for the quantitative
prediction of biomolecular interactions and to model properties that depend on the
wave functions and not just the energy terms. A new strategy called explicit
polarization (X-Pol) has been developed to construct the potential energy surface
and wave functions for macromolecular and liquid-phase simulations on the basis of
quantum mechanics rather than only using quantum mechanical results to fit analytic
force fields. In this spirit, this approach is called a quantum mechanical force field
(QMFF).
X-Pol is a general fragment method for electronic structure calculations based on the
partition of a condensed-phase or macromolecular system into subsystems (“fragments”) to achieve computational efficiency.
Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using
quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can
also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is
used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and
other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in
the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally
correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples
involving water clusters (which show the power of two-body corrections), ethylmethylimidazolium acetate ionic liquids (which
reveal that the amount of charge transfer between anion and cation is much smaller than what has been assumed in some classical
simulations), and a solvated protein in aqueous solution (which shows that the average charge distribution of carbonyl groups
along the polypeptide chain depends strongly on their position in the sequence, whereas they are fixed in most classical force
fields). The development of QMFFs also offers an opportunity to extend the accuracy of biochemical simulations to areas where
classical force fields are often insufficient, especially in the areas of spectroscopy, reactivity, and enzyme catalysis.

1. INTRODUCTION

Molecular mechanical (MM) force fields are widely used in
computer simulations of macromolecular systems, including
proteins and nucleic acids in aqueous solution.1,2 Although
these models are computationally efficient for applications to
large systems, there are also a number of well-known limitations
that are not easily resolved in the MM context.3,4 There is a
great need to further improve the accuracy to achieve
quantitative prediction of biomolecular interactions such as
ligand binding, electron and energy transfer, and enzymatic
reactions. It is timely to ask what type of potential energy
functions will be used in the future for biomolecular
simulations. One possibility is to continue improving the
current MM approach, including classical polarization terms
and charge transfer in the force fields. The second is to develop

a new theoretical framework with the capability of including
quantum mechanical effects explicitly to model intermolecular
interactions.5−9

Quantum mechanics, in principle, can provide both reactive
and nonreactive potential energy surfaces, including electro-
statics, electron correlation, polarization, and charge transfer.
Yet, it is limited by the computational cost, which increases
rapidly with the size of the system. To overcome this limitation,
a variety of fragment-based electronic structure methods,10
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many of which are illustrated in this Special Issue, have been
developed to increase the computational speed for large
molecular systems. For example, Gordon and co-workers
developed the effective fragment potential method,11 York
and co-workers employed a version of the divide-and-conquer
strategy for linear-scaling quantum-mechanical (QM) repre-
sentation of a macromolecular system as a force field,8,9,12 and
Herbert and co-workers discussed the issue of error
propagation in many-body expansion theory.13 A key issue is
the requirement for a suitable level of electronic structure
theory for monomers.13,14 For brevity, we shall not make an
extensive list of fragment methods, but the introduction of a
recent paper may be consulted for ∼70 relevant references.31

This Account presents one especially promising fragment
method, namely, the explicit-polarization method (X-
Pol),5,6,14−17 for the construction of a next-generation force
field on the basis of quantum mechanics.18

The X-Pol model is a fragment-based QM method,5,6,17 in
which the entire system is divided into molecular subunits,
which can consist of one or more molecules, ions, ligands,
cofactors, or amino acid residues. The key assumption in the X-
Pol method is that the wave function of the entire system is
approximated as a Hartree product of the antisymmetric wave
functions of individual fragments.5 Then, the optimization of
the total wave function can be reduced to the optimization of
each fragment embedded in and polarized by the rest of the
system; this reduces the computational cost to nearly linear
scaling with respect to the number of fragments.19 Clearly,
variational optimization of the mutual dependence of the
fragmental wave functions is critical to the success of this
method.16,17 As a force field, the energy of each fragment is
determined by the electronic structure method used, whereas
intermolecular interactions are modeled through electrostatic
embedding.15 The short-range exchange-repulsion interactions,
charge transfer, and long-range dispersion interactions and
correlation energy between different fragments can be modeled
empirically as in MM.5,6,15,20 Alternatively, these energy
contributions can be modeled by density-dependent func-
tionals, by Hartree−Fock (HF) exchange, or by making use of
many-body expansion corrections.10,14,38

In the following, we describe the theoretical approach of X-
Pol and illustrate computational results that demonstrate the
feasibility and accuracy of macromolecular simulations employ-
ing the X-Pol quantum mechanics force field (QMFF).

2. THEORETICAL BACKGROUND
In X-Pol, a system is partitioned into molecular fragments,5,6,15

which may be called monomers. For solutions with small solute
molecules, a fragment can be a single solute or solvent
molecule.15,18,21 For a polypeptide chain, the peptide unit as
defined by the IUPAC nomenclature (rather than the
conventional residue)22 is assigned to be the smallest fragment
that contains the atoms −Cα

I RICO−NHCα
I+1H− in the

conventional residues I and I + 1, where each Cα atom is
shared by two adjacent peptide units (Figure 1).6,23 Several
peptide units can be combined into the same fragment, if
desired, which can be useful for modeling systems containing
disulfide bonds. The connection approach is an extension of the
generalized hybrid orbital (GHO) method,24 originally
developed for combined QM/MM applications.25 Unlike
schemes that involve capping by a hydrogen atom,26 the
GHO method does not alter the number of degrees of freedom
or the electrostatic interactions between neighboring fragments.

Thus, the hybrid orbital approach provides a seamless transition
from one fragment to the next across chemical bonds, and a
buffering scheme was used to accelerate the convergence.27

The X-Pol model is derived from a conventional electronic
structure method by a hierarchy of three approximations.5,6,17

First, the wave function of the entire system is approximated as
a Hartree product of the antisymmetric wave functions of the
individual fragments,

∏Φ = Ψ
A

N

A
(1)

where N is the number of fragments. The effective Hamiltonian
of the system is given by
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where the first term sums over the Hamiltonians of all isolated
fragments {ĤA

o}, and the double summation accounts for
pairwise interactions among all the fragments; ĤA

int[VE
B]

represents electrostatic interactions between fragments A and
B with VE

B being the potential due to B, and the final term,
ΔEAB

XCD, specifies exchange-repulsion (X), charge delocalization
(C), and dispersion and other interfragment correlation (D)
energy contributions.
A general approach for representing the external potential,

VE
B, due to the charge density of fragment B is to use a

multicenter multipole expansion,5,6,17,28 of which the simplest
form is to limit the expansion to the monopole terms, so the
result only depends on the partial atomic charges.15 The use of
partial atomic charges to approximate VE

B is particularly
convenient for constructing the effective Hamiltonian of eq 2,
and this is the strategy that has been adopted in the X-Pol

Figure 1. Schematic depiction of the division of a polypeptide chain
into peptide units (A). Two fragments are highlighted in green and
red, respectively, corresponding to residues I − 1 and I. The Cα

boundary atom connecting these two peptide units is shown in panel
B, and its four hybrid orbitals are equally partitioned into the two
neighboring fragments.
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method.5,6,15−18,21 This strategy has also been used in other
studies.9,13,29−32

The total energy of the system in the X-Pol method is given
by

= Φ| ̂ |Φ‐E HX Pol (3)

There are two ways of constructing the Fock matrix for
optimizing the fragmental wave functions, and they distinguish
the variational X-Pol method from other fragment-based
methods.

2.1. Variational X-Pol

With the use of partial atomic charges to approximate VE
B, the

Fock operator for a fragment, A, is derived variationally to
yield16,17,27
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where Fμν
A,o is the Fock matrix element for the Hamiltonian of

isolated fragment A, qb
B is the point charge on atom b of

fragment B, Ib
B is the matrix of the one-electron integrals of the

embedding potential due to fragment B, and the last term
represents the response of the charge density of fragment B due
to variational optimization of the wave function of fragment A
(Xa

A is the derivative of the energy with respect to the atomic
charge on a, and Λa

A is the charge derivative with respect to the
density, see ref 33).

2.2. Embedded X-Pol

If each fragment is considered to be embedded in the static field
of the rest of the system, one can construct a Fock operator for
fragment A heuristically,5,11,15,34 akin to a combined QM/MM
approach;25 this yields

∑ ∑= −μν μν μν
≠ ∈

qF F I( )A A

B A b B
b
B

b
B A,eX ,o

(5)

In this charge-embedding approach, the mutual polarization
among all fragments in the system is achieved by iteratively
updating the partial atomic charges. However, eq 5 is not
variational, and it does not include the response of the charge
density to the changes of other charges. To emphasize this
difference and to emphasize that the full X-Pol algorithm is a
variational method, in the rest of this Account, the method in
section 2.1 will be called variational X-Pol, and the subsequent
many-body expansion corrections (to be introduced below) will
be called VMB2 and VMB3. The embedding approach (section
2.2) is simply called embedded X-Pol, and the many-body
corrections to it will be called EMB2 and EMB3. When we just
say X-Pol, MB2, or MB3, it applies to either.
The variational X-Pol method has the advantage over

embedded X-Pol of allowing the computation of analytic
gradients for efficient geometry optimization and dynamics
simulations.16,17,27 Furthermore, the total energy obtained from
the variational procedure is necessarily lower than that from the
charge-embedding scheme. Consequently, it is expected that
the use of the variational X-Pol energy as the monomer energy
reference state in many-body energy expansion should lead to
smaller corrections than other alternatives.14 Although it is
possible to obtain analytic gradients for the nonvariational,
charge-embedding approaches,35 it generally involves solution
of coupled-perturbed self-consistent field equations. Sometimes

the response terms in fragment-based methods have been
neglected.36

2.3. Many-Body Improvements

The errors in the procedures presented so far are sometimes
unacceptably large. In such cases, we can consider those
procedures to constitute the one-body term in a many-body
expansion and systematically improve the results by including
higher-order terms in the expansion.
Two alternatives can be followed, which correspond to the

use of X-Pol as a multilevel quantum chemical method,14,36,37

as exemplified by the examples to be presented in section 3.1,
or as a quantum mechanical force field that introduces
empirical energy terms,5,6,18 as in section 3.2. The Hartree
product wave function in eq 1 implies that interfragment charge
delocalization and exchange-repulsion interactions arising from
the Pauli exclusion principle are neglected.38,39 However, these
interactions as well as interfragment dispersion interactions
make critical contributions to intermolecular interactions.
Together, they are included in a term called ΔEXCD, and they
must be properly accounted for.38−40 A brute force approach is
to employ variational many-body expansion (VMB) theory to
make two-body, three-body, and higher order corrections,10,14

but nonvariational approaches are also possible.11,30,34 When
two- and three-body terms are included, we have, respectively,
the corresponding VMB2 and VMB3 corrections,

∑Δ ≈ Δ = −
<

‐E E E E( )
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In eqs 6 and 7, EIJ and EIJK are, respectively, the X-Pol energies
when two and three monomers are grouped into a single
superfragment. Thus, the difference in parentheses in eq 6 gives
the two-body correction energy, ΔEIJ, accounting for exchange
and charge delocalization effects at the Hartree−Fock level plus
dispersion-correlation contributions when correlated methods
are used. Typically, the dimer and trimer fragments are
significantly smaller than the full system, making the
computation costs for a single oligomer negligible compared
with the cost for a single calculation of the entire system.
However, the number of trimer and higher-order terms
increases rapidly with the number of fragments, rendering
these terms impractical. Thus, in using this approach, it is
critical to define a reference state for the monomer energy such
that terms of order higher than 2 are negligible.14,37

When the X-Pol method is used as a theoretical framework
to develop force fields for condensed-phase and macro-
molecular systems, a simpler, empirical approach can be
adopted, such as Lennard-Jones or Buckingham potentials (as
used in molecular mechanics)2,3,8,15,17,20 or perturbation
theory41 to estimate the dimer ΔEABXCD terms.

3. ILLUSTRATIVE EXAMPLES

3.1. Multilevel X-Pol as a Quantum Chemical Model for
Macromolecules

The X-Pol method can be used with different electronic
structure representations for different fragments. This provides
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a general, multilevel QM/QM treatment for large systems,
where the region of most interest could be modeled by a high-
level electronic structure theory, embedded in an environment
modeled by a lower-level representation.33 To illustrate this
possibility, a number of formulations of different electronic
structure models have been used to describe the bimolecular
complexes between CH3CO2H and H2O and between a Zundel
ion H5O2

+ and four water molecules.33 In multilevel X-Pol
calculations with different QM models, the interaction between
different fragments is coupled by the electrostatic potential, VE

B,
in eq 2. Two different charge models, namely, Mulliken
population analysis (MPA) and electrostatic potential (ESP)
charge-fitting, have been used to construct the charge-
embedding Fock matrix (eq 5), whereas only the MPA charges
were used in the variational X-Pol (eq 4) model.
The variational and embedded X-Pol interaction energies

between H5O2
+ and (H2O)4 are listed in Table 1, and they tend

to overestimate the binding interactions since interfragment
exchange-repulsion interactions are neglected. With the
inclusion of the ΔEXCD energy, derived from an energy
decomposition analysis40 using CCSD/MG3S and HF/MG3S
results, the computed binding energies are significantly
improved. The variational CCSD/MG3S:M06/MG3S combi-
nation yielded reasonable agreement (−68.0 kcal/mol) with the
binding energy obtained from a higher-level CCSD(T)/MG3S
calculation (−69.7 kcal/mol). The errors from the other
combinations in the table range from 2.3 to 8.9 kcal/mol. This
demonstrates that it is important to develop a systematic
procedure to improve the accuracy of X-Pol (both variational
and embedding models) beyond the monomer approximation.

The errors due to the Hartree-product approximation for the
molecular wave function in X-Pol can be systematically
corrected using variational10,14 and embedding5,34,42−45 many-
body expansions (VMBn and EMBn). Table 2 displays the total
interaction energies of four local-minimum-energy structures
for the water hexamer, determined up to the third order VMB
correction, as calculated by the Hartree−Fock (HF) and
recently introduced polarized molecular orbital (PMO)
methods.18 Although there are significant errors at the
monomer level due to neglecting the ΔEXCD contributions,
the binding energies are significantly improved with the dimer
correction (VMB2),14 and the computed results at the VMB3
level are in quantitative agreement with those from the
corresponding full QM calculations.
The VMB results are in systematically better agreement with

the binding energies from full QM calculations than are the
results of the corresponding charge-embedding approach. The
difference is particularly striking at the two-body correction
level, with average errors of 2.2 and 1.5 kcal/mol from VMB2@
HF and VMB2@PMO, as compared with 4.2 and 6.1 kcal/mol
for EMB2@HF and EMB2@PMO, respectively. This empha-
sizes the critical role of defining a good monomer energy in MB
expansion theory, and the variational X-Pol energy leads to
better convergence in correction terms. Including three-body
energies, the errors are of chemical accuracy.
Although results for the small water clusters are encouraging,

we found that significant errors exist for larger water clusters
(Table 3). We examined a system containing 65 molecules,
taken from a configuration in liquid simulations by keeping
water molecules within 7.5 Å of a selected monomer center. We
used HF, MP2, B3LYP and B3LYP-D, and PMO electronic
structure methods to describe the monomers and dimers, all
with the 6-31G(d) basis set (except PMO, which has a method-
specific basis set). The absolute binding energies are not
converged in these calculations; one may note in passing that
the performance of the semiempirical PMO model18 for water
is exceptionally good, but the main purpose here is to test the
performance of many-body expansion theory. Among the four
ab initio and density functional models, the average unsigned
error using the variational model at the VMB2 level is about 60
kcal/mol, or about 1 kcal/mol per monomer. We see that the
error is small employing the EMB2 approach with EX-Pol
background charges; in particular, it is about 11 kcal/mol for
the complex or 0.17 kcal/mol per monomer. For comparison, a
fragment molecular orbital calculation (in particular by the
FMO2 procedure, which is very similar to the MB2 approach)
for a 64-water cluster yielded an error of 0.003 au (1.9 kcal/
mol) per monomer by employing MP2.46 The origin of

Table 1. Computed Electrostatic Interaction Energies, ΔEelec
(kcal/mol), between H5O2

+ (A) and (H2O)4 (B) Using
Multilevel X-Pol with the Charge-Embedded and Variational
Interaction Hamiltoniansa

charge-embedding variational

A B ESP MPA MPA ΔEXCD ΔEb
M06 M06 −89.1 −87.5 −91.0 15.9 −75.1
M06 B3LYP −87.7 −85.2 −88.1 15.9 −72.2
M06 HF −92.0 −91.7 −94.5 15.9 −78.6
MP2 HF −92.9 −92.7 −94.4 15.9 −78.5
CCSD M06 −89.5 −88.0 −83.9 15.9 −68.0

aThe 6-31G(d) basis set was used in all calculations with M06/MG3S
optimized monomer and dimer geometries, and ΔEXCD was estimated
using HF and CCSD/MG3S energies.

Table 2. Computed Interaction Energies for Water Hexamer Structures from Unfragmented Quantum Mechanical Calculations,
The Variational Many-Body Expansion (VMB), and Embedded Many-Body Expansion (EMB) Models at the HF/6-311G(d,p)
and Polarized Molecular Orbital (PMO) Levels

book cage cyclic prism

HF PMO HF PMO HF PMO HF PMO

Full QM −45.1 −44.9 −45.9 −47.6 −44.3 −41.8 −47.1 −46.9
VX-Pol −53.9 −26.8 −49.9 −25.0 −58.0 −28.7 −49.1 −24.3
VMB2 −42.5 −43.6 −44.9 −45.7 −39.8 −40.0 −46.2 −45.9
VMB3 −44.4 −44.8 −44.9 −46.5 −43.6 −41.6 −46.0 −46.8
EX-Pol −39.2 −22.5 −37.2 −21.2 −41.2 −24.1 −36.8 −20.7
EMB2 −40.3 −39.0 −43.2 −41.1 −37.5 −35.3 −44.7 −41.3
EMB3 −44.4 −44.2 −44.9 −46.1 −43.3 −40.9 −45.9 −46.3

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar5002186 | Acc. Chem. Res. 2014, 47, 2837−28452840



relatively large errors in VMB is due to charge penetration
effects in X-Pol optimization. While this is not significant with a
minimal basis such as that employed in semiempirical methods,
it can become unphysically large when extended basis sets are
used.47 In some cases, an explicit exchange repulsion potential
may be needed to prevent these effects.
Charge penetration effects are much smaller in many-body

corrections using the PMO semiempirical method, as illustrated
for a range of water clusters with and without periodic
boundary conditions. In this case, both VMB3 and EMB3
binding energies are nearly in quantitative agreement with the
unfragmented QM results (see Supporting Information);
however, embedded MB3 is much more efficient than VMB3
in energy calculations since the SCF is carried out on trimer
fragments with fixed background charges.
Figure 2 displays the interaction energy due to charge

delocalization with respect to charge transferred for the cluster

of 65 water molecules at the two-body VMB2 level with HF/6-
31G(d). The figure shows a good correlation between charge
transfer energy and the net amount of charge migration
between two monomers; such correlations are critical to the
success of MM force fields, in which charge transfer are not
explicitly included. Similar correlations have been observed in
cation−π complexes from energy decomposition analysis, and
they can be rationalized based on perturbation theory.48

3.2. X-Pol as a Quantum Mechanical Force Field

Although ab initio molecular orbital theory and density
functional theory can be used to improve the accuracy of X-

Pol results, it is still impractical to use these methods to
perform molecular dynamics simulations on large systems for
an extended period of time. With increased computing power,
this will become feasible in the future; however, at present, it is
desirable to use semiempirical methods such as neglect of
diatomic differential overlap (NDDO)49 methods or the more
recent self-consistent-charge density functional tight-binding
(SCC-DFTB)50 method to model condensed-phase systems
and biomacromolecules.
The construction of a QMFF based on the variational X-Pol

formalism has two components. First, a computationally
efficient quantum chemical model is needed to describe the
electronic structure of individual molecular fragments. Here we
use the PMO method,51 which is based on the MNDO
formalism with the addition of a set of p-orbitals on each
hydrogen atom. It was found that the computed molecular
polarizabilities for a range of compounds containing hydrogen,
carbon, oxygen, and fluorine are significantly improved in this
method.21,51,52 In addition to the enhancement in computed
molecular polarizability, a damped dispersion function is
included as a post-SCF contribution to the electronic energy.53

Second, a practical and parametrizable procedure is desired to
model interfragment electrostatic and exchange-dispersion
interactions. For the electrostatic component, a dipole-
preserving and polarization consistent (DPPC) method has
been used to derive partial atomic charges that can exactly
reproduce the instantaneous molecular dipole moment from
the polarized electron density of each fragment.54 Since the
DPPC charges are optimized by a Lagrange multiplier
technique, there are no new empirical parameters. For the
ΔEXCD term, pairwise Lennard-Jones potentials were adopted
with monatomic parameters; such potentials contain two
parameters for each atomic number.15,17,20 Employing this
strategy, X-Pol quantum chemical models for water18 and for
hydrogen fluoride21 have been developed for fluid simulations.

3.2.1. Water. The water model is called XP3P, and the
system-specific parametrization of the PMO method that is
used as part of this model is called PMOw. The results from
simulations of liquid water18 are displayed in Table 4 for 25 °C
and 1 atm, along with results from the TIP3P pairwise potential
and from two polarizable force fields, namely, AMOEBA and
SWM4-NDP. The data in Table 4 were obtained from an
assemblage of over 900 million configurations in Monte Carlo
simulation and 500 ps of molecular dynamics simulation for a
cubic system containing 267 water molecules;18 the latter took
about 24 h (1 fs integration step) on an eight-core workstation,
while about 7 million configurations can be executed in Monte
Carlo sampling. The average density and heat of vaporization of
the XP3P water are within 1% of the experimental values.
Quantities involving intermolecular fluctuations such as
isothermal compressibility, coefficient of thermal expansion,
and dielectric constant are more difficult to converge, but

Table 3. Computed Interaction Energies for a (H2O)65 Water Cluster Using Variational and Embedding X-Pol and Two-Body
Correctionsa

Full QM VX-Pol VMB2 EX-Pol EMB2

HF −645.5 −1008.7 −691.2 −942.4 −638.8
MP2 −975.6 −915.3 −917.3 −877.3 b
B3LYP −887.1 −861.5 −953.7 −797.6 −874.4
B3LYP-D −1042.7 −861.5 −1109.4 −797.6 −1030.1
PMO −735.5 −432.6 −720.9 (−734.7)c −344.8 −602.6 (−722.3)c

aThe 6-31G(d) basis set was used in ab initio and DFT calculations. bNot calculated. cEntries in parentheses are by VMB3 and EMB3.

Figure 2. Computed dimeric charge transfer energy versus the amount
of charge transferred from a donor water molecule into an acceptor
water molecule for a water cluster system consisting of 65 water
molecules.
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overall, the agreement with experiment is good,18 and the
performance of the XP3P model is as good as any other
empirical force field in dynamics simulations.
Monte Carlo simulations of liquid water were performed at

temperatures ranging from −40 to 100 °C, and Figure 3 shows

the distribution of the instantaneous molecular dipole mo-
ments. We can infer from the broadness of the observed
distribution that water molecules in the liquid experience a wide
spectrum of instantaneous electrostatic fields from the rest of
the system. Figure 3 indicates that the maximum value in the
dipole probability density distribution is the same at different
temperatures, despite the large change in the dipole
fluctuations, suggesting that there is polarization saturation in
liquid water. The average molecular dipole moment of water in
the liquid at 25 °C was determined to be 2.524 ± 0.002 D,
which represents an increase of 35% relative to the gas-phase
value (1.88 D) from the PMOw Hamiltonian. There is no
experimental data for direct comparison, but Sprik concluded
that an average dipole moment of 2.5−2.6 D in liquid water
would most likely yield the correct dielectric constant.55

All other thermodynamic and dynamic properties deter-
mined using the XP3P model in Table 4 agree reasonably well
with experiments and are of similar accuracy to results by other
empirical models.18 Figure 4 shows the structure of liquid water

characterized by radial distribution functions, gxy(r). In
comparison with the neutron scattering data,56 the computa-
tional results are in excellent agreement with experiments. In
particular, a well-resolved minimum was obtained following the
first peak in the O−O distribution, which with the XP3P
potential is at 2.78 ± 0.05 Å with a peak height of 3.0. The
corresponding experimental values are 2.73 Å and 2.8 from
neutron diffraction.56

3.2.2. Ionic Liquid. The X-Pol method was used in
molecular dynamics simulations for a system consisting of 125
pairs of 1-ethyl-3-methylimidazolium (EMIM) cations and
acetate anions in a periodic box using the AM1 model57 to
represent each ion as a molecular fragment. Conventional
molecular dynamics simulations of ionic liquids often employ
charge-scaled force fields to approximate charge transfer effects
between anions and cations, and scaling factors ranging from
0.7 to 0.9 have been used.58−60 With the VMB2 scheme, it was
found that there is a relatively small amount of charge transfer
between acetate and EMIM, with an average departure of only
0.03 from unit ionic charges. In contrast, the average charge

Table 4. Computed Liquid Properties of the XP3P Model for Water along with Those from Experiments, and the TIP3P,
AMOEBA, and SWM4-NDP Modelsa

XP3P TIP3P AMOEBA SWM4-NDP expt

ΔHv, kcal/mol 10.42 ± 0.01 10.41 10.48 10.51 10.51
density, g/cm3 0.996 ± 0.001 1.002 1.000 1.000 0.997
Cp, cal mol

−1 K−1 21.8 ± 1.0 20.0 20.9 18.0
106κ, atm−1 25 ± 2 60 46
105α, K−1 37 ± 3 75 26
μgas, D 1.88 2.31 1.77 1.85 1.85
μliq, D 2.524 ± 0.002 2.31 2.78 2.33 2.3−2.6
105D, cm2/s 2.7 5.1 2.02 2.3 2.3
ε 97 ± 8 92 82 79 ± 3 78
τD, (ps) 8.8 11 ± 2 8.3
τNMR, (ps) 2.6 1.87 ± 0.03 2.1

Adapted with permission from ref 18. Copyright 2013 AIP Publishing LLC aΔHv, heat of vaporization; Cp, heat capacity; κ, isothermal
compressibility; α, coefficient of thermal expansion; μ, dipole moment; D, diffusion constant; ε, dielectric constant; τD, Debye relaxation time; and
τNMR, NMR rotational relaxation time.

Figure 3. Distribution of the molecular dipole moment of water in the
liquid at temperatures ranging from −40 to 100 °C. Adapted with
permission from ref 18. Copyright 2013 AIP Publishing LLC.

Figure 4. Computed (blue) and experimental (red) radial distribution
functions for the O−O pair in liquid water at 25 °C. Adapted with
permission from ref 18. Copyright 2013 AIP Publishing LLC.
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transfer over five minimum energy configurations in the gas
phase was 0.10, similar to other studies.58 Thus, it appears that
condensed phase polarization effects significantly reduce the
amount of charge transfer between cations and anions in ionic
liquids; this casts doubt on modeling them with charge-scaling
factors significantly deviating from unity.
3.2.3. Protein Simulations. The small protein bovine

pancreatic trypsin inhibitor (BPTI) was simulated in water with
periodic boundary conditions using the AM1 electronic
structure method.23 The simulation involved 14 281 atoms
and 29 026 basis functions, for which 3.2 ps (1 fs time-step)
could be performed per day on a single processor (1.66 GHz)
computer. Figure 5 depicts the average partial atomic charge of

the carbonyl group for each amino acid of the polypeptide
chain. There is significant fluctuation of the charge distribution
in the backbone carbonyl group depending on its sequence
location because of its different electrostatic environment as a
result of specific hydrogen-bonding interactions with the
solvent and polarization by nearby residues. (Since standard
semiempirical methods are known to underestimate intermo-
lecular polarization effects, the findings from this study likely
represent a lower limit of the polarization effects.) This study
illustrates the importance of electronic polarization effects in
macromolecular simulations. For comparison, the standard
CHARMM22 force field makes use of neutral group
convention where the total net atomic charge of the peptide
carbonyl group is zero, and the partial atomic charges in the
group are the same in all conformational substates.

4. CONCLUDING REMARKS
In this Account, we presented a new strategy to construct
potential energy surfaces for macromolecular and liquid-phase
systems on the basis of quantum mechanics. Electronic
structure theory is directly used to model intermolecular
interactions, rather than using quantum mechanical calculations
to fit analytical potentials. Potential energy surfaces produced
by this approach are called quantum mechanical force fields
(QMFFs).
Our strategy, called X-Pol, is based on the partition of

condensed-phase and macromolecular systems into fragments
to achieve computational efficiency. The intrafragment polar-
ization and the mutual polarization between different fragments
are treated explicitly using self-consistent quantum mechanical
calculations. The present theory can be used as a single-level
method in which all fragments are treated in the same way or
more generally as a multilevel electronic structure model in
which different fragments are represented by different quantum

chemical methods. The X-Pol wave function can be optimized
either using a variational Fock operator or through a charge-
embedding iterative approach. In both cases, interfragment
electrostatic interactions are directly included, whereas the
remaining effects, called ΔEXCD, consisting of exchange-
repulsion, charge delocalization, and missing dispersion and
correlation energies, can be systematically incorporated using a
many-body expansion or by approximating ΔEXCD with
empirical functions.
So far, we have shown the feasibility of X-Pol for molecular

dynamics simulations of a solvated protein in aqueous solution
and the accuracy of the X-Pol QMFF for condensed-phase
simulations, including liquid water and hydrogen fluoride. The
method can also model physical properties that cannot be
directly obtained using classical force fields. The project of
developing broadly applicable parameters for using X-Pol as a
QMFF is still in its infancy, but the method has great promise.
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